Improvements of the Initialization Method of DAEs in OpenModelica

Lennart A. Ochel Bernhard Bachmann Willi Braun

FH Bielefeld - University of Applied Sciences

Outline

- ⇒ Symbolic Transformation Steps
- □ Initialization in Modelica (Conventional)
- ⇒ Initialization in OpenModelica

Mathematical Formalism

general representation of hybrid DAEs:

$$\underline{0} = \underline{f}\left(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

t	time
$\dot{\underline{x}}(t)$	vector of differentiated state variables
$\underline{x}(t)$	vector of state variables
$\underline{y}(t)$	Vector of algebraic variables
$\underline{u}(t)$	vector of input variables
$\underline{q}(t_e); \underline{q}_{pre}(t_e)$	vectors of discrete variables
$\underline{c}(t_e)$	vector of condition expressions
\underline{p}	vector of parameters/constants

Principles of Numerical Integration Methods (Example: Explicit Euler Method)

Integration of explicit ordinary differential equations (ODEs):

$$\underline{\dot{x}}(t) = \underline{f}\left(t, \underline{x}(t), \underline{u}(t), \underline{p}\right), \qquad \underline{x}(t_0) = \underline{x}_0$$

Numerical approximation of the derivative and/or right-hand-side:

$$\underline{\dot{x}}(t_n) \approx \frac{\underline{x}(t_{n+1}) - \underline{x}(t_n)}{t_{n+1} - t_n} \approx \underline{f}\left(t_n, \underline{x}(t_n), \underline{u}(t_n), \underline{p}\right)$$

Iteration scheme:

$$\underline{x}(t_{n+1}) \approx \underline{x}(t_n) + \left(t_{n+1} - t_n\right) \cdot \underline{f}\left(t_n, \underline{x}(t_n), \underline{u}(t_n), \underline{p}\right)$$

Calculating an approximation of $\underline{x}(t_{n+1})$ based on the values of $\underline{x}(t_n)$

Here:

Explicit Euler integration method

Convergence?

Symbolic Transformation Steps

Transform to explicit state-space representation:

$$\underline{0} = \underline{f}\left(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right) \qquad \underline{0} = \underline{f}\left(t, \underline{z}, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right) \qquad \underline{z} = \left(\frac{\dot{x}}{\underline{y}}\right)$$

$$\underline{z} = \left(\frac{\dot{x}}{\underline{y}}\right) = \underline{g}\left(t, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right) \qquad \underline{\dot{x}} = \underline{h}\left(t, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

$$\underline{y} = \underline{k}\left(t, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

Implicit function theorem:

 Necessary condition for the existence of the transformation is that the following matrix is regular at the point of interest:

$$\det\left(\frac{\partial}{\partial \underline{z}}\underline{f}\left(t,\underline{z},\underline{x},\underline{u},\underline{q},\underline{q}_{pre},\underline{c},\underline{p}\right)\right) \neq 0$$

Initialization in Modelica

Initialization of "free" state variables

same number of "free" states and additional equations

Initialization of "free" parameters

 same number of "free" parameters and additional equations

Initialization mechanism in Modelica

- initial equation/algorithm sections
- attribute fixed, start and nominal

$$\underline{0} = \underline{f}\left(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

$$\underline{0} = \underline{f}\left(t, \underline{z}, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right) \quad \underline{z} = \left(\frac{\dot{x}}{\underline{y}}\right)$$

$$\underline{z} = \left(\frac{\dot{x}}{\underline{y}}\right) = \underline{g}\left(t, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

$$\underline{\dot{x}} = \underline{h}\left(t, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

$$\underline{y} = \underline{k}\left(t, \underline{x}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$$

Initialization in OpenModelica

Nonlinear system of equations

- *m*, number of equations
- *n*, number of variables
- $m \ge n$, over-determined
- $m \le n$, under-determined

$$G_1(z_1, ..., z_n) = 0$$

 \vdots
 $G_m(z_1, ..., z_n) = 0$

Corresponding minimization problem

 solution solves the nonlinear system of equations

$$\sum_{i=1}^{m} G_i(z_1, \dots, z_n)^2 \to \min$$
s.t.: $\underline{0} = \underline{f}\left(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p}\right)$

Derivative-free method in OpenModelica

based on simplex method of Nelder and Mead

Initialization in OpenModelica

Full Support of Start-Values

initial equation/algorithm

equations are valid at the end of the initialization

$$G_1(z_1, \dots, z_n) = 0$$

$$\vdots$$

$$G_m(z_1, \dots, z_n) = 0$$

attribute: start

guesses are valid at the beginning of the initialization

$$z_i - \operatorname{start}(z_i) = 0$$

$$\min \left\{ \lambda \sum_{i=1}^{m} G_i^2 + (1 - \lambda) \sum_{i} (z_i - \text{start}(z_i))^2 \right\}$$

s.t.:
$$\underline{0} = \underline{f}(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q_{pre}}, \underline{c}, \underline{p})$$

Full Support of Start-Values

```
model StartValue
  Real x;
  Real y(start=-3);
initial equation
  x^2 = 10;
equation
  der(x) = time;
  y = x;
end StartValue;
```

var	expected solution	solution 2
X	$-\sqrt{10}$	$\sqrt{10}$
У	$-\sqrt{10}$	$\sqrt{10}$
	OpenModelica	Dymola

$$\min \left\{ \lambda \sum_{i=1}^{m} G_i^2 + (1 - \lambda) \sum_{i} (z_i - \text{start}(z_i))^2 \right\}$$
s.t.: $\underline{0} = \underline{f} \left(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q}_{pre}, \underline{c}, \underline{p} \right)$

Under-Determined Initialization

Fewer equations than unfixed states/parameters:

- 1. Symbolic analysis of dependencies
- 2. Numerical analysis of dependencies

Initialization
$$\Leftrightarrow 0 = \min\{F(\underline{z})\}\$$

s.t.: $\underline{0} = \underline{f}(t, \underline{\dot{x}}, \underline{x}, \underline{y}, \underline{u}, \underline{q}, \underline{q_{pre}}, \underline{c}, \underline{p})$

$$F(\underline{z}) = \lambda \sum_{i=1}^{m} G_i^2 + (1 - \lambda) \sum_{i} (z_i - \text{start}(z_i))^2$$

Example:
$$F(z_1, z_2) = (z_1 - 10^{-6})^2 + (z_2 - 10^6)^2$$

- $F(10^{-6}, 10^6) = 0$
- $F(1.1 \cdot 10^{-6}, 10^{6}) = 10^{-14}$ 10% deviation in z_1
- $F(10^{-6}, 1.1 \cdot 10^6) = 10^{10}$ 10% deviation in z_2

$$F(z_1, z_2) = \underbrace{(z_1 - 10^{-6})^2}_{G_1} + \underbrace{(z_2 - 10^6)^2}_{G_2}$$

- $F(10^{-6}, 10^6) = 0$
- $F(1.1 \cdot 10^{-6}, 10^6) = 10^{-14}$
- $F(10^{-6}, 1.1 \cdot 10^6) = 10^{10}$
- 10% deviation in z_1

10% deviation in z_2

With Scaling:
$$\tilde{F}(\underline{z}) = \lambda \sum_{i=1}^{m} K_i^{-1} \cdot G_i^2 + (1-\lambda) \sum_i K_i^{-1} \cdot (z_i - \text{start}(z_i))^2$$

- $\tilde{F}(10^{-6}, 10^6) = 0$
- $\tilde{F}(1.1 \cdot 10^{-6}, 10^{6}) = 0.1$

10% deviation in z_1

• $\tilde{F}(10^{-6}, 1.1 \cdot 10^6) = 0.1$

10% deviation in z_2

Example:
$$\tilde{F}(z_1, z_2) = K_1^{-1} \cdot (z_1 - 10^{-6})^2 + K_2^{-1} \cdot (z_2 - 10^{6})^2$$

How to choose K_i^{-1} ? (linear dependencies of one variable)

- $K_1 = \text{nominal}(z_1)$
- $K_1 = \text{nominal}(z_2)$

How to handle in general?

- nonlinear equations
- multiple dependencies

How to choose scaling coefficients in general?

$$\tilde{F}(\underline{z}) = \lambda \sum_{i=1}^{m} K_i^{-1} \cdot G_i^2 + (1 - \lambda) \sum_{i} K_i^{-1} \cdot (z_i - \text{start}(z_i))^2$$

$$K_{i} = \max_{j} \left\{ \operatorname{nominal}(x_{j}) \cdot \left| \frac{\partial G_{i}(\operatorname{nominal}(x))}{\partial x_{j}} \right|, Kmin \right\}$$
(derived from differential error analysis)

Kmin, heuristically treatment for small K_i

Conclusions

- Reliable initialization of standard models (OMC test suite)
- Initialization of consistent over-determined systems
- Initialization of under-determined systems
- Full support of start values for all variables
 - see Modelica specification
- Numerical improvements by robust scaling techniques
- First tests with real-world-problems:
 - First tests with models from Siemens Power library successfull

Future Work

- Efficiency improvements
 - Implementation of more advanced optimization algorithms
 - Involve boundary conditions (min/max-values)
 - Symbolic preprocessing of initalization problem
- Initialization of under-determined systems
 - Symbolic analysis of dependencies between states and initial equations
- Real-World-Problems:
 - More advanced tests with models from Siemens Power library
 - Full support of Modelica Standard Library (OMC functionality)